Manifold Learning
Isomap/LocallyLinearEmbedding/MDS/SpectralEmbedding/TSNE
Common
Input Data
Inputs
*Target Data(X)
Data Input
*Model Name
Name of the user-defined manifold learning model
Transform
If not empty, the reduced matrix will be stored here.
If left empty, the model will only compute scores on individual features.
Conv.DataFrame
If checked, the output data created by Transform will be converted into a DataFrame.
*x (numeric)
User-selected columns to be X.
One or more columns should be selected.

Workflow Example

Python Package
Isomap: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html
LocallyLinearEmbedding: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
MDS: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
SpectralEmbedding: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
TSNE: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
Last updated
Was this helpful?