Manifold Learning

Isomap/LocallyLinearEmbedding/MDS/SpectralEmbedding/TSNE

Common

Input Data

Inputs

*Target Data(X)

Data Input

*Model Name

Name of the user-defined manifold learning model

Transform

If not empty, the reduced matrix will be stored here.

If left empty, the model will only compute scores on individual features.

Conv.DataFrame

If checked, the output data created by Transform will be converted into a DataFrame.

*x (numeric)

User-selected columns to be X.

  • One or more columns should be selected.

[Task information of TSNE]

Workflow Example

Python Package

Isomap: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.htmlarrow-up-right

LocallyLinearEmbedding: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.htmlarrow-up-right

MDS: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.htmlarrow-up-right

SpectralEmbedding: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.htmlarrow-up-right

TSNE: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.htmlarrow-up-right

Last updated

Was this helpful?