R-Flow
  • R-Flow Task Guide
  • User-Guide
  • R
    • Transfer: R to Python
    • Script: R Script
    • Data Preprocess
      • Data Cleansing (Missing, Duplicate Data)
        • Missing Data Imputer
        • Outlier Imputer
      • Data Scaler
      • Normalize
      • Encode Feature
      • Highly Imbalanced Data
      • Data Handling
        • Data Aggregate
        • Data Subset
        • Data Filter
        • Data Join
        • Data Merge
        • Data Sort
        • Data Sampling
        • Data Imputation
    • Statistics
      • Hypothesis Test
      • ANOVA
      • PCR
      • Time Series Analysis
      • Factor Analysis
    • Machine Learning
      • Feature Selection
        • Filter Methods
        • Wrapper Methods
      • Dimension Reduction
      • Neural Network based ML
      • Similarity based ML
      • Information based ML
      • Bayesian Based ML
      • Clustering
        • Optimal
        • OPTICS
        • Others
      • Outlier Detection
        • Univariate Outliers
        • Bivariate Outliers
        • Multivariate Outliers
        • Time-Series Outliers
      • Recommend
      • Association Rule Analysis
    • Data Predict
    • R Object Load, Save
  • Python
    • Transfer: Python To R
    • Script: Python Script
    • Data Preprocess
      • Data Cleansing
        • Missing Data Imputer
      • Data Scaler
      • Normalize
      • Encode Feature
      • Highly-Imbalanced Data
        • Under-Sampling
        • Over-Sampling
        • Combination of over- and under-sampling
      • Data Handling
        • Data Aggregate
        • Data X,Y Split
        • Data Filter
        • Data Join
        • Data Concat
        • Data Sampling
        • Data Imputation
    • Machine Learning
      • Estimator
      • Probability Calibration
      • Clustering
      • Matrix Decomposition
      • Discriminant Analysis
      • Ensemble Methods
      • Feature Selection
      • Isotonic regression
      • Kernel Ridge Regression
      • Linear Models
        • Linear classifiers
        • Classical linear regressors
        • Regressors with variable selection
        • Bayesian Reg.
        • Multi-task linear regressors with variable selection
        • Outlier-robust regressors
      • Manifold Learning
      • Gaussian Mixture Models
      • Model Selection
      • Multiclass and Multilabel Classification
      • Multioutput regression and classification
      • Naive Bayes
      • Nearest Neighbors
      • Neural network models
      • Support Vector Machines
    • Data Predict/Transform
      • Data Transform
      • Python Predict
    • Python Object Load,Save
Powered by GitBook
On this page

Was this helpful?

  1. Python

Machine Learning

Contents

Estimator

Probability Calibration

Clustering

Matrix Decomposition

Discriminant Analysis

Ensemble Methods

Feature Selection

Isotonic Regression

Kernel Ridge Regression

Linear Models

Manifold Learning

Gaussian Mixture Models

Model Selection

Multiclass and Multilabel Classification

Multioutput regression and classification

Naive Bayes

Nearest Neighbors

Neural network models

Support Vector Machines

PreviousData ImputationNextEstimator

Last updated 4 years ago

Was this helpful?