Multioutput regression and classification
MultiOutputClassifier/MultiOutputRegressor
Common
Input Data
Inputs
*Target Data
Data Input
*Model Name
Name of the user-defined multi classifier model
Predict Output
If not empty, the model will additionally make prediction on Target Data and store
the result here.
Merge Data
Predict Output will be created with predicted labels concatenated to Merge Data.
*x
User-selected columns to be x.
One or more columns should be selected.
*y
User-selected columns to be y.
Two or more columns should be selected.
Defining estimators
In Arguments, you have to define a classification estimator for MultiOutputClassifier and a regression estimator for MultiOutputRegressor.

Workflow Example
R-Flow Task Example Video: MultiOutputRegressor
Python Package
MultiOutputClassifier: https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputClassifier.html
MultiOutputRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
Last updated
Was this helpful?